Skip to content

prefect_ray.task_runners

Interface and implementations of the Ray Task Runner. Task Runners in Prefect are responsible for managing the execution of Prefect task runs. Generally speaking, users are not expected to interact with task runners outside of configuring and initializing them for a flow.

Example
import time

from prefect import flow, task

@task
def shout(number):
    time.sleep(0.5)
    print(f"#{number}")

@flow
def count_to(highest_number):
    for number in range(highest_number):
        shout.submit(number)

if __name__ == "__main__":
    count_to(10)

# outputs
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

Switching to a RayTaskRunner:

import time

from prefect import flow, task
from prefect_ray import RayTaskRunner

@task
def shout(number):
    time.sleep(0.5)
    print(f"#{number}")

@flow(task_runner=RayTaskRunner)
def count_to(highest_number):
    for number in range(highest_number):
        shout.submit(number)

if __name__ == "__main__":
    count_to(10)

# outputs
#3
#7
#2
#6
#4
#0
#1
#5
#8
#9

Classes

RayTaskRunner

Bases: BaseTaskRunner

A parallel task_runner that submits tasks to ray. By default, a temporary Ray cluster is created for the duration of the flow run. Alternatively, if you already have a ray instance running, you can provide the connection URL via the address kwarg. Args: address (string, optional): Address of a currently running ray instance; if one is not provided, a temporary instance will be created. init_kwargs (dict, optional): Additional kwargs to use when calling ray.init. Examples: Using a temporary local ray cluster:

from prefect import flow
from prefect_ray.task_runners import RayTaskRunner

@flow(task_runner=RayTaskRunner())
def my_flow():
    ...
Connecting to an existing ray instance:
RayTaskRunner(address="ray://192.0.2.255:8786")

Source code in prefect_ray/task_runners.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
class RayTaskRunner(BaseTaskRunner):
    """
    A parallel task_runner that submits tasks to `ray`.
    By default, a temporary Ray cluster is created for the duration of the flow run.
    Alternatively, if you already have a `ray` instance running, you can provide
    the connection URL via the `address` kwarg.
    Args:
        address (string, optional): Address of a currently running `ray` instance; if
            one is not provided, a temporary instance will be created.
        init_kwargs (dict, optional): Additional kwargs to use when calling `ray.init`.
    Examples:
        Using a temporary local ray cluster:
        ```python
        from prefect import flow
        from prefect_ray.task_runners import RayTaskRunner

        @flow(task_runner=RayTaskRunner())
        def my_flow():
            ...
        ```
        Connecting to an existing ray instance:
        ```python
        RayTaskRunner(address="ray://192.0.2.255:8786")
        ```
    """

    def __init__(
        self,
        address: str = None,
        init_kwargs: dict = None,
    ):
        # Store settings
        self.address = address
        self.init_kwargs = init_kwargs.copy() if init_kwargs else {}

        self.init_kwargs.setdefault("namespace", "prefect")

        # Runtime attributes
        self._ray_refs: Dict[str, "ray.ObjectRef"] = {}

        super().__init__()

    def duplicate(self):
        """
        Return a new instance of with the same settings as this one.
        """
        return type(self)(address=self.address, init_kwargs=self.init_kwargs)

    def __eq__(self, other: object) -> bool:
        """
        Check if an instance has the same settings as this task runner.
        """
        if type(self) == type(other):
            return (
                self.address == other.address and self.init_kwargs == other.init_kwargs
            )
        else:
            return NotImplemented

    @property
    def concurrency_type(self) -> TaskConcurrencyType:
        return TaskConcurrencyType.PARALLEL

    async def submit(
        self,
        key: UUID,
        call: Callable[..., Awaitable[State[R]]],
    ) -> None:
        if not self._started:
            raise RuntimeError(
                "The task runner must be started before submitting work."
            )

        call_kwargs, upstream_ray_obj_refs = self._exchange_prefect_for_ray_futures(
            call.keywords
        )

        remote_options = RemoteOptionsContext.get().current_remote_options
        # Ray does not support the submission of async functions and we must create a
        # sync entrypoint
        if remote_options:
            ray_decorator = ray.remote(**remote_options)
        else:
            ray_decorator = ray.remote

        self._ray_refs[key] = (
            ray_decorator(self._run_prefect_task)
            .options(name=call.keywords["task_run"].name)
            .remote(sync_compatible(call.func), *upstream_ray_obj_refs, **call_kwargs)
        )

    def _exchange_prefect_for_ray_futures(self, kwargs_prefect_futures):
        """Exchanges Prefect futures for Ray futures."""

        upstream_ray_obj_refs = []

        def exchange_prefect_for_ray_future(expr):
            """Exchanges Prefect future for Ray future."""
            if isinstance(expr, PrefectFuture):
                ray_future = self._ray_refs.get(expr.key)
                if ray_future is not None:
                    upstream_ray_obj_refs.append(ray_future)
                    return ray_future
            return expr

        kwargs_ray_futures = visit_collection(
            kwargs_prefect_futures,
            visit_fn=exchange_prefect_for_ray_future,
            return_data=True,
        )

        return kwargs_ray_futures, upstream_ray_obj_refs

    @staticmethod
    def _run_prefect_task(func, *upstream_ray_obj_refs, **kwargs):
        """Resolves Ray futures before calling the actual Prefect task function.

        Passing upstream_ray_obj_refs directly as args enables Ray to wait for
        upstream tasks before running this remote function.
        This variable is otherwise unused as the ray object refs are also
        contained in kwargs.
        """

        def resolve_ray_future(expr):
            """Resolves Ray future."""
            if isinstance(expr, ray.ObjectRef):
                return ray.get(expr)
            return expr

        kwargs = visit_collection(kwargs, visit_fn=resolve_ray_future, return_data=True)

        return func(**kwargs)

    async def wait(self, key: UUID, timeout: float = None) -> Optional[State]:
        ref = self._get_ray_ref(key)

        result = None

        with anyio.move_on_after(timeout):
            # We await the reference directly instead of using `ray.get` so we can
            # avoid blocking the event loop
            try:
                result = await ref
            except RayTaskError as exc:
                # unwrap the original exception that caused task failure, except for
                # KeyboardInterrupt, which unwraps as TaskCancelledError
                result = await exception_to_crashed_state(exc.cause)
            except BaseException as exc:
                result = await exception_to_crashed_state(exc)

        return result

    async def _start(self, exit_stack: AsyncExitStack):
        """
        Start the task runner and prep for context exit.

        - Creates a cluster if an external address is not set.
        - Creates a client to connect to the cluster.
        - Pushes a call to wait for all running futures to complete on exit.
        """
        if self.address and self.address != "auto":
            self.logger.info(
                f"Connecting to an existing Ray instance at {self.address}"
            )
            init_args = (self.address,)
        elif ray.is_initialized():
            self.logger.info(
                "Local Ray instance is already initialized. "
                "Using existing local instance."
            )
            return
        else:
            self.logger.info("Creating a local Ray instance")
            init_args = ()

        context = ray.init(*init_args, **self.init_kwargs)
        dashboard_url = getattr(context, "dashboard_url", None)
        exit_stack.push(context)

        # Display some information about the cluster
        nodes = ray.nodes()
        living_nodes = [node for node in nodes if node.get("alive")]
        self.logger.info(f"Using Ray cluster with {len(living_nodes)} nodes.")

        if dashboard_url:
            self.logger.info(
                f"The Ray UI is available at {dashboard_url}",
            )

    async def _shutdown_ray(self):
        """
        Shuts down the cluster.
        """
        self.logger.debug("Shutting down Ray cluster...")
        ray.shutdown()

    def _get_ray_ref(self, key: UUID) -> "ray.ObjectRef":
        """
        Retrieve the ray object reference corresponding to a prefect future.
        """
        return self._ray_refs[key]

Functions

__eq__

Check if an instance has the same settings as this task runner.

Source code in prefect_ray/task_runners.py
139
140
141
142
143
144
145
146
147
148
def __eq__(self, other: object) -> bool:
    """
    Check if an instance has the same settings as this task runner.
    """
    if type(self) == type(other):
        return (
            self.address == other.address and self.init_kwargs == other.init_kwargs
        )
    else:
        return NotImplemented
duplicate

Return a new instance of with the same settings as this one.

Source code in prefect_ray/task_runners.py
133
134
135
136
137
def duplicate(self):
    """
    Return a new instance of with the same settings as this one.
    """
    return type(self)(address=self.address, init_kwargs=self.init_kwargs)