Skip to content

prefect_dbt.cloud.jobs

Module containing tasks and flows for interacting with dbt Cloud jobs

Classes

DbtCloudJob

Bases: JobBlock

Block that holds the information and methods to interact with a dbt Cloud job.

Attributes:

Name Type Description
dbt_cloud_credentials DbtCloudCredentials

The credentials to use to authenticate with dbt Cloud.

job_id int

The id of the dbt Cloud job.

timeout_seconds int

The number of seconds to wait for the job to complete.

interval_seconds int

The number of seconds to wait between polling for job completion.

trigger_job_run_options TriggerJobRunOptions

The options to use when triggering a job run.

Examples:

Load a configured dbt Cloud job block.

from prefect_dbt.cloud import DbtCloudJob

dbt_cloud_job = DbtCloudJob.load("BLOCK_NAME")

Triggers a dbt Cloud job, waits for completion, and fetches the results.

from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials, DbtCloudJob

@flow
def dbt_cloud_job_flow():
    dbt_cloud_credentials = DbtCloudCredentials.load("dbt-token")
    dbt_cloud_job = DbtCloudJob.load(
        dbt_cloud_credentials=dbt_cloud_credentials,
        job_id=154217
    )
    dbt_cloud_job_run = dbt_cloud_job.trigger()
    dbt_cloud_job_run.wait_for_completion()
    dbt_cloud_job_run.fetch_result()
    return dbt_cloud_job_run

dbt_cloud_job_flow()

Source code in prefect_dbt/cloud/jobs.py
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
class DbtCloudJob(JobBlock):
    """
    Block that holds the information and methods to interact with a dbt Cloud job.

    Attributes:
        dbt_cloud_credentials: The credentials to use to authenticate with dbt Cloud.
        job_id: The id of the dbt Cloud job.
        timeout_seconds: The number of seconds to wait for the job to complete.
        interval_seconds:
            The number of seconds to wait between polling for job completion.
        trigger_job_run_options: The options to use when triggering a job run.

    Examples:
        Load a configured dbt Cloud job block.
        ```python
        from prefect_dbt.cloud import DbtCloudJob

        dbt_cloud_job = DbtCloudJob.load("BLOCK_NAME")
        ```

        Triggers a dbt Cloud job, waits for completion, and fetches the results.
        ```python
        from prefect import flow
        from prefect_dbt.cloud import DbtCloudCredentials, DbtCloudJob

        @flow
        def dbt_cloud_job_flow():
            dbt_cloud_credentials = DbtCloudCredentials.load("dbt-token")
            dbt_cloud_job = DbtCloudJob.load(
                dbt_cloud_credentials=dbt_cloud_credentials,
                job_id=154217
            )
            dbt_cloud_job_run = dbt_cloud_job.trigger()
            dbt_cloud_job_run.wait_for_completion()
            dbt_cloud_job_run.fetch_result()
            return dbt_cloud_job_run

        dbt_cloud_job_flow()
        ```
    """

    _block_type_name = "dbt Cloud Job"
    _logo_url = "https://images.ctfassets.net/gm98wzqotmnx/5zE9lxfzBHjw3tnEup4wWL/9a001902ed43a84c6c96d23b24622e19/dbt-bit_tm.png?h=250"  # noqa
    _documentation_url = "https://prefecthq.github.io/prefect-dbt/cloud/jobs/#prefect_dbt.cloud.jobs.DbtCloudJob"  # noqa

    dbt_cloud_credentials: DbtCloudCredentials = Field(
        default=...,
        description="The dbt Cloud credentials to use to authenticate with dbt Cloud.",
    )  # noqa: E501
    job_id: int = Field(
        default=..., description="The id of the dbt Cloud job.", title="Job ID"
    )
    timeout_seconds: int = Field(
        default=900,
        description="The number of seconds to wait for the job to complete.",
    )
    interval_seconds: int = Field(
        default=10,
        description="The number of seconds to wait between polling for job completion.",
    )
    trigger_job_run_options: TriggerJobRunOptions = Field(
        default_factory=TriggerJobRunOptions,
        description="The options to use when triggering a job run.",
    )

    @sync_compatible
    async def get_job(self, order_by: Optional[str] = None) -> Dict[str, Any]:
        """
        Retrieve information about a dbt Cloud job.

        Args:
            order_by: The field to order the results by.

        Returns:
            The job data.
        """
        try:
            async with self.dbt_cloud_credentials.get_administrative_client() as client:
                response = await client.get_job(
                    job_id=self.job_id,
                    order_by=order_by,
                )
        except HTTPStatusError as ex:
            raise DbtCloudGetJobFailed(extract_user_message(ex)) from ex
        return response.json()["data"]

    @sync_compatible
    async def trigger(
        self, trigger_job_run_options: Optional[TriggerJobRunOptions] = None
    ) -> DbtCloudJobRun:
        """
        Triggers a dbt Cloud job.

        Returns:
            A representation of the dbt Cloud job run.
        """
        try:
            trigger_job_run_options = (
                trigger_job_run_options or self.trigger_job_run_options
            )
            async with self.dbt_cloud_credentials.get_administrative_client() as client:
                response = await client.trigger_job_run(
                    job_id=self.job_id, options=trigger_job_run_options
                )
        except HTTPStatusError as ex:
            raise DbtCloudJobRunTriggerFailed(extract_user_message(ex)) from ex

        run_data = response.json()["data"]
        run_id = run_data.get("id")
        run = DbtCloudJobRun(
            dbt_cloud_job=self,
            run_id=run_id,
        )
        self.logger.info(
            f"dbt Cloud job {self.job_id} run {run_id} successfully triggered. "
            f"You can view the status of this run at "
            f"https://{self.dbt_cloud_credentials.domain}/#/accounts/"
            f"{self.dbt_cloud_credentials.account_id}/projects/"
            f"{run_data['project_id']}/runs/{run_id}/"
        )
        return run

Functions

get_job async

Retrieve information about a dbt Cloud job.

Parameters:

Name Type Description Default
order_by Optional[str]

The field to order the results by.

None

Returns:

Type Description
Dict[str, Any]

The job data.

Source code in prefect_dbt/cloud/jobs.py
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
@sync_compatible
async def get_job(self, order_by: Optional[str] = None) -> Dict[str, Any]:
    """
    Retrieve information about a dbt Cloud job.

    Args:
        order_by: The field to order the results by.

    Returns:
        The job data.
    """
    try:
        async with self.dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.get_job(
                job_id=self.job_id,
                order_by=order_by,
            )
    except HTTPStatusError as ex:
        raise DbtCloudGetJobFailed(extract_user_message(ex)) from ex
    return response.json()["data"]
trigger async

Triggers a dbt Cloud job.

Returns:

Type Description
DbtCloudJobRun

A representation of the dbt Cloud job run.

Source code in prefect_dbt/cloud/jobs.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
@sync_compatible
async def trigger(
    self, trigger_job_run_options: Optional[TriggerJobRunOptions] = None
) -> DbtCloudJobRun:
    """
    Triggers a dbt Cloud job.

    Returns:
        A representation of the dbt Cloud job run.
    """
    try:
        trigger_job_run_options = (
            trigger_job_run_options or self.trigger_job_run_options
        )
        async with self.dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.trigger_job_run(
                job_id=self.job_id, options=trigger_job_run_options
            )
    except HTTPStatusError as ex:
        raise DbtCloudJobRunTriggerFailed(extract_user_message(ex)) from ex

    run_data = response.json()["data"]
    run_id = run_data.get("id")
    run = DbtCloudJobRun(
        dbt_cloud_job=self,
        run_id=run_id,
    )
    self.logger.info(
        f"dbt Cloud job {self.job_id} run {run_id} successfully triggered. "
        f"You can view the status of this run at "
        f"https://{self.dbt_cloud_credentials.domain}/#/accounts/"
        f"{self.dbt_cloud_credentials.account_id}/projects/"
        f"{run_data['project_id']}/runs/{run_id}/"
    )
    return run

DbtCloudJobRun

Bases: JobRun

Class that holds the information and methods to interact with the resulting run of a dbt Cloud job.

Source code in prefect_dbt/cloud/jobs.py
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
class DbtCloudJobRun(JobRun):  # NOT A BLOCK
    """
    Class that holds the information and methods to interact
    with the resulting run of a dbt Cloud job.
    """

    def __init__(self, run_id: int, dbt_cloud_job: "DbtCloudJob"):
        self.run_id = run_id
        self._dbt_cloud_job = dbt_cloud_job
        self._dbt_cloud_credentials = dbt_cloud_job.dbt_cloud_credentials

    @property
    def _log_prefix(self):
        return f"dbt Cloud job {self._dbt_cloud_job.job_id} run {self.run_id}."

    async def _wait_until_state(
        self,
        in_final_state_fn: Awaitable[Callable],
        get_state_fn: Awaitable[Callable],
        log_state_fn: Callable = None,
        timeout_seconds: int = 60,
        interval_seconds: int = 1,
    ):
        """
        Wait until the job run reaches a specific state.

        Args:
            in_final_state_fn: An async function that accepts a run state
                and returns a boolean indicating whether the job run is
                in a final state.
            get_state_fn: An async function that returns
                the current state of the job run.
            log_state_fn: A callable that accepts a run
                state and makes it human readable.
            timeout_seconds: The maximum amount of time, in seconds, to wait
                for the job run to reach the final state.
            interval_seconds: The number of seconds to wait between checks of
                the job run's state.
        """
        start_time = time.time()
        last_state = run_state = None
        while not in_final_state_fn(run_state):
            run_state = await get_state_fn()
            if run_state != last_state:
                if self.logger is not None:
                    self.logger.info(
                        "%s has new state: %s",
                        self._log_prefix,
                        log_state_fn(run_state),
                    )
                last_state = run_state

            elapsed_time_seconds = time.time() - start_time
            if elapsed_time_seconds > timeout_seconds:
                raise DbtCloudJobRunTimedOut(
                    f"Max wait time of {timeout_seconds} "
                    "seconds exceeded while waiting"
                )
            await asyncio.sleep(interval_seconds)

    @sync_compatible
    async def get_run(self) -> Dict[str, Any]:
        """
        Makes a request to the dbt Cloud API to get the run data.

        Returns:
            The run data.
        """
        try:
            dbt_cloud_credentials = self._dbt_cloud_credentials
            async with dbt_cloud_credentials.get_administrative_client() as client:
                response = await client.get_run(self.run_id)
        except HTTPStatusError as ex:
            raise DbtCloudGetRunFailed(extract_user_message(ex)) from ex
        run_data = response.json()["data"]
        return run_data

    @sync_compatible
    async def get_status_code(self) -> int:
        """
        Makes a request to the dbt Cloud API to get the run status.

        Returns:
            The run status code.
        """
        run_data = await self.get_run()
        run_status_code = run_data.get("status")
        return run_status_code

    @sync_compatible
    async def wait_for_completion(self) -> None:
        """
        Waits for the job run to reach a terminal state.
        """
        await self._wait_until_state(
            in_final_state_fn=DbtCloudJobRunStatus.is_terminal_status_code,
            get_state_fn=self.get_status_code,
            log_state_fn=DbtCloudJobRunStatus,
            timeout_seconds=self._dbt_cloud_job.timeout_seconds,
            interval_seconds=self._dbt_cloud_job.interval_seconds,
        )

    @sync_compatible
    async def fetch_result(self, step: Optional[int] = None) -> Dict[str, Any]:
        """
        Gets the results from the job run. Since the results
        may not be ready, use wait_for_completion before calling this method.

        Args:
            step: The index of the step in the run to query for artifacts. The
                first step in the run has the index 1. If the step parameter is
                omitted, then this method will return the artifacts compiled
                for the last step in the run.
        """
        run_data = await self.get_run()
        run_status = DbtCloudJobRunStatus(run_data.get("status"))
        if run_status == DbtCloudJobRunStatus.SUCCESS:
            try:
                async with self._dbt_cloud_credentials.get_administrative_client() as client:  # noqa
                    response = await client.list_run_artifacts(
                        run_id=self.run_id, step=step
                    )
                run_data["artifact_paths"] = response.json()["data"]
                self.logger.info("%s completed successfully!", self._log_prefix)
            except HTTPStatusError as ex:
                raise DbtCloudListRunArtifactsFailed(extract_user_message(ex)) from ex
            return run_data
        elif run_status == DbtCloudJobRunStatus.CANCELLED:
            raise DbtCloudJobRunCancelled(f"{self._log_prefix} was cancelled.")
        elif run_status == DbtCloudJobRunStatus.FAILED:
            raise DbtCloudJobRunFailed(f"{self._log_prefix} has failed.")
        else:
            raise DbtCloudJobRunIncomplete(
                f"{self._log_prefix} is still running; "
                "use wait_for_completion() to wait until results are ready."
            )

    @sync_compatible
    async def get_run_artifacts(
        self,
        path: Literal["manifest.json", "catalog.json", "run_results.json"],
        step: Optional[int] = None,
    ) -> Union[Dict[str, Any], str]:
        """
        Get an artifact generated for a completed run.

        Args:
            path: The relative path to the run artifact.
            step: The index of the step in the run to query for artifacts. The
                first step in the run has the index 1. If the step parameter is
                omitted, then this method will return the artifacts compiled
                for the last step in the run.

        Returns:
            The contents of the requested manifest. Returns a `Dict` if the
                requested artifact is a JSON file and a `str` otherwise.
        """
        try:
            dbt_cloud_credentials = self._dbt_cloud_credentials
            async with dbt_cloud_credentials.get_administrative_client() as client:
                response = await client.get_run_artifact(
                    run_id=self.run_id, path=path, step=step
                )
        except HTTPStatusError as ex:
            raise DbtCloudGetRunArtifactFailed(extract_user_message(ex)) from ex

        if path.endswith(".json"):
            artifact_contents = response.json()
        else:
            artifact_contents = response.text
        return artifact_contents

    def _select_unsuccessful_commands(
        self,
        run_results: List[Dict[str, Any]],
        command_components: List[str],
        command: str,
        exe_command: str,
    ) -> List[str]:
        """
        Select nodes that were not successful and rebuild a command.
        """
        # note "fail" here instead of "cancelled" because
        # nodes do not have a cancelled state
        run_nodes = " ".join(
            run_result["unique_id"].split(".")[2]
            for run_result in run_results
            if run_result["status"] in ("error", "skipped", "fail")
        )

        select_arg = None
        if "-s" in command_components:
            select_arg = "-s"
        elif "--select" in command_components:
            select_arg = "--select"

        # prevent duplicate --select/-s statements
        if select_arg is not None:
            # dbt --fail-fast run, -s, bad_mod --vars '{"env": "prod"}' to:
            # dbt --fail-fast run -s other_mod bad_mod --vars '{"env": "prod"}'
            command_start, select_arg, command_end = command.partition(select_arg)
            modified_command = (
                f"{command_start} {select_arg} {run_nodes} {command_end}"  # noqa
            )
        else:
            # dbt --fail-fast, build, --vars '{"env": "prod"}' to:
            # dbt --fail-fast build --select bad_model --vars '{"env": "prod"}'
            dbt_global_args, exe_command, exe_args = command.partition(exe_command)
            modified_command = (
                f"{dbt_global_args} {exe_command} -s {run_nodes} {exe_args}"
            )
        return modified_command

    async def _build_trigger_job_run_options(
        self,
        job: Dict[str, Any],
        run: Dict[str, Any],
    ) -> TriggerJobRunOptions:
        """
        Compiles a list of steps (commands) to retry, then either build trigger job
        run options from scratch if it does not exist, else overrides the existing.
        """
        generate_docs = job.get("generate_docs", False)
        generate_sources = job.get("generate_sources", False)

        steps_override = []
        for run_step in run["run_steps"]:
            status = run_step["status_humanized"].lower()
            # Skipping cloning, profile setup, and dbt deps - always the first three
            # steps in any run, and note, index starts at 1 instead of 0
            if run_step["index"] <= 3 or status == "success":
                continue
            # get dbt build from "Invoke dbt with `dbt build`"
            command = run_step["name"].partition("`")[2].partition("`")[0]

            # These steps will be re-run regardless if
            # generate_docs or generate_sources are enabled for a given job
            # so if we don't skip, it'll run twice
            freshness_in_command = (
                "dbt source snapshot-freshness" in command
                or "dbt source freshness" in command
            )
            if "dbt docs generate" in command and generate_docs:
                continue
            elif freshness_in_command and generate_sources:
                continue

            # find an executable command like `build` or `run`
            # search in a list so that there aren't false positives, like
            # `"run" in "dbt run-operation"`, which is True; we actually want
            # `"run" in ["dbt", "run-operation"]` which is False
            command_components = shlex.split(command)
            for exe_command in EXE_COMMANDS:
                if exe_command in command_components:
                    break
            else:
                exe_command = ""

            is_exe_command = exe_command in EXE_COMMANDS
            is_not_success = status in ("error", "skipped", "cancelled")
            is_skipped = status == "skipped"
            if (not is_exe_command and is_not_success) or (
                is_exe_command and is_skipped
            ):
                # if no matches like `run-operation`, we will be rerunning entirely
                # or if it's one of the expected commands and is skipped
                steps_override.append(command)
            else:
                # errors and failures are when we need to inspect to figure
                # out the point of failure
                try:
                    run_artifact = await self.get_run_artifacts(
                        "run_results.json", run_step["index"]
                    )
                except JSONDecodeError:
                    # get the run results scoped to the step which had an error
                    # an error here indicates that either:
                    # 1) the fail-fast flag was set, in which case
                    #    the run_results.json file was never created; or
                    # 2) there was a problem on dbt Cloud's side saving
                    #    this artifact
                    steps_override.append(command)
                else:
                    # we only need to find the individual nodes
                    # for those run commands
                    run_results = run_artifact["results"]
                    modified_command = self._select_unsuccessful_commands(
                        run_results=run_results,
                        command_components=command_components,
                        command=command,
                        exe_command=exe_command,
                    )
                    steps_override.append(modified_command)

        if self._dbt_cloud_job.trigger_job_run_options is None:
            trigger_job_run_options_override = TriggerJobRunOptions(
                steps_override=steps_override
            )
        else:
            trigger_job_run_options_override = (
                self._dbt_cloud_job.trigger_job_run_options.copy()
            )
            trigger_job_run_options_override.steps_override = steps_override
        return trigger_job_run_options_override

    @sync_compatible
    async def retry_failed_steps(self) -> "DbtCloudJobRun":  # noqa: F821
        """
        Retries steps that did not complete successfully in a run.

        Returns:
            A representation of the dbt Cloud job run.
        """
        job = await self._dbt_cloud_job.get_job()
        run = await self.get_run()

        trigger_job_run_options_override = await self._build_trigger_job_run_options(
            job=job, run=run
        )

        num_steps = len(trigger_job_run_options_override.steps_override)
        if num_steps == 0:
            self.logger.info(f"{self._log_prefix} does not have any steps to retry.")
        else:
            self.logger.info(f"{self._log_prefix} has {num_steps} steps to retry.")
            run = await self._dbt_cloud_job.trigger(
                trigger_job_run_options=trigger_job_run_options_override,
            )
        return run

Functions

fetch_result async

Gets the results from the job run. Since the results may not be ready, use wait_for_completion before calling this method.

Parameters:

Name Type Description Default
step Optional[int]

The index of the step in the run to query for artifacts. The first step in the run has the index 1. If the step parameter is omitted, then this method will return the artifacts compiled for the last step in the run.

None
Source code in prefect_dbt/cloud/jobs.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
@sync_compatible
async def fetch_result(self, step: Optional[int] = None) -> Dict[str, Any]:
    """
    Gets the results from the job run. Since the results
    may not be ready, use wait_for_completion before calling this method.

    Args:
        step: The index of the step in the run to query for artifacts. The
            first step in the run has the index 1. If the step parameter is
            omitted, then this method will return the artifacts compiled
            for the last step in the run.
    """
    run_data = await self.get_run()
    run_status = DbtCloudJobRunStatus(run_data.get("status"))
    if run_status == DbtCloudJobRunStatus.SUCCESS:
        try:
            async with self._dbt_cloud_credentials.get_administrative_client() as client:  # noqa
                response = await client.list_run_artifacts(
                    run_id=self.run_id, step=step
                )
            run_data["artifact_paths"] = response.json()["data"]
            self.logger.info("%s completed successfully!", self._log_prefix)
        except HTTPStatusError as ex:
            raise DbtCloudListRunArtifactsFailed(extract_user_message(ex)) from ex
        return run_data
    elif run_status == DbtCloudJobRunStatus.CANCELLED:
        raise DbtCloudJobRunCancelled(f"{self._log_prefix} was cancelled.")
    elif run_status == DbtCloudJobRunStatus.FAILED:
        raise DbtCloudJobRunFailed(f"{self._log_prefix} has failed.")
    else:
        raise DbtCloudJobRunIncomplete(
            f"{self._log_prefix} is still running; "
            "use wait_for_completion() to wait until results are ready."
        )
get_run async

Makes a request to the dbt Cloud API to get the run data.

Returns:

Type Description
Dict[str, Any]

The run data.

Source code in prefect_dbt/cloud/jobs.py
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
@sync_compatible
async def get_run(self) -> Dict[str, Any]:
    """
    Makes a request to the dbt Cloud API to get the run data.

    Returns:
        The run data.
    """
    try:
        dbt_cloud_credentials = self._dbt_cloud_credentials
        async with dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.get_run(self.run_id)
    except HTTPStatusError as ex:
        raise DbtCloudGetRunFailed(extract_user_message(ex)) from ex
    run_data = response.json()["data"]
    return run_data
get_run_artifacts async

Get an artifact generated for a completed run.

Parameters:

Name Type Description Default
path Literal['manifest.json', 'catalog.json', 'run_results.json']

The relative path to the run artifact.

required
step Optional[int]

The index of the step in the run to query for artifacts. The first step in the run has the index 1. If the step parameter is omitted, then this method will return the artifacts compiled for the last step in the run.

None

Returns:

Type Description
Union[Dict[str, Any], str]

The contents of the requested manifest. Returns a Dict if the requested artifact is a JSON file and a str otherwise.

Source code in prefect_dbt/cloud/jobs.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
@sync_compatible
async def get_run_artifacts(
    self,
    path: Literal["manifest.json", "catalog.json", "run_results.json"],
    step: Optional[int] = None,
) -> Union[Dict[str, Any], str]:
    """
    Get an artifact generated for a completed run.

    Args:
        path: The relative path to the run artifact.
        step: The index of the step in the run to query for artifacts. The
            first step in the run has the index 1. If the step parameter is
            omitted, then this method will return the artifacts compiled
            for the last step in the run.

    Returns:
        The contents of the requested manifest. Returns a `Dict` if the
            requested artifact is a JSON file and a `str` otherwise.
    """
    try:
        dbt_cloud_credentials = self._dbt_cloud_credentials
        async with dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.get_run_artifact(
                run_id=self.run_id, path=path, step=step
            )
    except HTTPStatusError as ex:
        raise DbtCloudGetRunArtifactFailed(extract_user_message(ex)) from ex

    if path.endswith(".json"):
        artifact_contents = response.json()
    else:
        artifact_contents = response.text
    return artifact_contents
get_status_code async

Makes a request to the dbt Cloud API to get the run status.

Returns:

Type Description
int

The run status code.

Source code in prefect_dbt/cloud/jobs.py
720
721
722
723
724
725
726
727
728
729
730
@sync_compatible
async def get_status_code(self) -> int:
    """
    Makes a request to the dbt Cloud API to get the run status.

    Returns:
        The run status code.
    """
    run_data = await self.get_run()
    run_status_code = run_data.get("status")
    return run_status_code
retry_failed_steps async

Retries steps that did not complete successfully in a run.

Returns:

Type Description
DbtCloudJobRun

A representation of the dbt Cloud job run.

Source code in prefect_dbt/cloud/jobs.py
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
@sync_compatible
async def retry_failed_steps(self) -> "DbtCloudJobRun":  # noqa: F821
    """
    Retries steps that did not complete successfully in a run.

    Returns:
        A representation of the dbt Cloud job run.
    """
    job = await self._dbt_cloud_job.get_job()
    run = await self.get_run()

    trigger_job_run_options_override = await self._build_trigger_job_run_options(
        job=job, run=run
    )

    num_steps = len(trigger_job_run_options_override.steps_override)
    if num_steps == 0:
        self.logger.info(f"{self._log_prefix} does not have any steps to retry.")
    else:
        self.logger.info(f"{self._log_prefix} has {num_steps} steps to retry.")
        run = await self._dbt_cloud_job.trigger(
            trigger_job_run_options=trigger_job_run_options_override,
        )
    return run
wait_for_completion async

Waits for the job run to reach a terminal state.

Source code in prefect_dbt/cloud/jobs.py
732
733
734
735
736
737
738
739
740
741
742
743
@sync_compatible
async def wait_for_completion(self) -> None:
    """
    Waits for the job run to reach a terminal state.
    """
    await self._wait_until_state(
        in_final_state_fn=DbtCloudJobRunStatus.is_terminal_status_code,
        get_state_fn=self.get_status_code,
        log_state_fn=DbtCloudJobRunStatus,
        timeout_seconds=self._dbt_cloud_job.timeout_seconds,
        interval_seconds=self._dbt_cloud_job.interval_seconds,
    )

Functions

get_dbt_cloud_job_info async

A task to retrieve information about a dbt Cloud job.

Parameters:

Name Type Description Default
dbt_cloud_credentials DbtCloudCredentials

Credentials for authenticating with dbt Cloud.

required
job_id int

The ID of the job to get.

required

Returns:

Type Description
Dict

The job data returned by the dbt Cloud administrative API.

Example

Get status of a dbt Cloud job:

from prefect import flow

from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import get_job

@flow
def get_job_flow():
    credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

    return get_job(
        dbt_cloud_credentials=credentials,
        job_id=42
    )

get_job_flow()

Source code in prefect_dbt/cloud/jobs.py
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@task(
    name="Get dbt Cloud job details",
    description="Retrieves details of a dbt Cloud job "
    "for the job with the given job_id.",
    retries=3,
    retry_delay_seconds=10,
)
async def get_dbt_cloud_job_info(
    dbt_cloud_credentials: DbtCloudCredentials,
    job_id: int,
    order_by: Optional[str] = None,
) -> Dict:
    """
    A task to retrieve information about a dbt Cloud job.

    Args:
        dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
        job_id: The ID of the job to get.

    Returns:
        The job data returned by the dbt Cloud administrative API.

    Example:
        Get status of a dbt Cloud job:
        ```python
        from prefect import flow

        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import get_job

        @flow
        def get_job_flow():
            credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

            return get_job(
                dbt_cloud_credentials=credentials,
                job_id=42
            )

        get_job_flow()
        ```
    """  # noqa
    try:
        async with dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.get_job(
                job_id=job_id,
                order_by=order_by,
            )
    except HTTPStatusError as ex:
        raise DbtCloudGetJobFailed(extract_user_message(ex)) from ex
    return response.json()["data"]

get_run_id

Task that extracts the run ID from a trigger job run API response,

This task is mainly used to maintain dependency tracking between the trigger_dbt_cloud_job_run task and downstream tasks/flows that use the run ID.

Parameters:

Name Type Description Default
obj Dict

The JSON body from the trigger job run response.

required
Example
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run, get_run_id


@flow
def trigger_run_and_get_id():
    dbt_cloud_credentials=DbtCloudCredentials(
            api_key="my_api_key",
            account_id=123456789
        )

    triggered_run_data = trigger_dbt_cloud_job_run(
        dbt_cloud_credentials=dbt_cloud_credentials,
        job_id=job_id,
        options=trigger_job_run_options,
    )
    run_id = get_run_id.submit(triggered_run_data)
    return run_id

trigger_run_and_get_id()
Source code in prefect_dbt/cloud/jobs.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
@task(
    name="Get dbt Cloud job run ID",
    description="Extracts the run ID from a trigger job run API response",
)
def get_run_id(obj: Dict):
    """
    Task that extracts the run ID from a trigger job run API response,

    This task is mainly used to maintain dependency tracking between the
    `trigger_dbt_cloud_job_run` task and downstream tasks/flows that use the run ID.

    Args:
        obj: The JSON body from the trigger job run response.

    Example:
        ```python
        from prefect import flow
        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run, get_run_id


        @flow
        def trigger_run_and_get_id():
            dbt_cloud_credentials=DbtCloudCredentials(
                    api_key="my_api_key",
                    account_id=123456789
                )

            triggered_run_data = trigger_dbt_cloud_job_run(
                dbt_cloud_credentials=dbt_cloud_credentials,
                job_id=job_id,
                options=trigger_job_run_options,
            )
            run_id = get_run_id.submit(triggered_run_data)
            return run_id

        trigger_run_and_get_id()
        ```
    """
    id = obj.get("id")
    if id is None:
        raise RuntimeError("Unable to determine run ID for triggered job.")
    return id

retry_dbt_cloud_job_run_subset_and_wait_for_completion async

Flow that retrys a subset of dbt Cloud job run, filtered by select statuses, and waits for the triggered retry to complete.

Parameters:

Name Type Description Default
dbt_cloud_credentials DbtCloudCredentials

Credentials for authenticating with dbt Cloud.

required
trigger_job_run_options Optional[TriggerJobRunOptions]

An optional TriggerJobRunOptions instance to specify overrides for the triggered job run.

None
max_wait_seconds int

Maximum number of seconds to wait for job to complete

900
poll_frequency_seconds int

Number of seconds to wait in between checks for run completion.

10
run_id int

The ID of the job run to retry.

required

Raises:

Type Description
ValueError

If trigger_job_run_options.steps_override is set by the user.

Returns:

Type Description
Dict

The run data returned by the dbt Cloud administrative API.

Examples:

Retry a subset of models in a dbt Cloud job run and wait for completion:

from prefect import flow

from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import retry_dbt_cloud_job_run_subset_and_wait_for_completion

@flow
def retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow():
    credentials = DbtCloudCredentials.load("MY_BLOCK_NAME")
    retry_dbt_cloud_job_run_subset_and_wait_for_completion(
        dbt_cloud_credentials=credentials,
        run_id=88640123,
    )

retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow()

Source code in prefect_dbt/cloud/jobs.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
@flow(
    name="Retry subset of dbt Cloud job run and wait for completion",
    description=(
        "Retries a subset of dbt Cloud job run, filtered by select statuses, "
        "and waits for the triggered retry to complete."
    ),
)
async def retry_dbt_cloud_job_run_subset_and_wait_for_completion(
    dbt_cloud_credentials: DbtCloudCredentials,
    run_id: int,
    trigger_job_run_options: Optional[TriggerJobRunOptions] = None,
    max_wait_seconds: int = 900,
    poll_frequency_seconds: int = 10,
) -> Dict:
    """
    Flow that retrys a subset of dbt Cloud job run, filtered by select statuses,
    and waits for the triggered retry to complete.

    Args:
        dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
        trigger_job_run_options: An optional TriggerJobRunOptions instance to
            specify overrides for the triggered job run.
        max_wait_seconds: Maximum number of seconds to wait for job to complete
        poll_frequency_seconds: Number of seconds to wait in between checks for
            run completion.
        run_id: The ID of the job run to retry.

    Raises:
        ValueError: If `trigger_job_run_options.steps_override` is set by the user.

    Returns:
        The run data returned by the dbt Cloud administrative API.

    Examples:
        Retry a subset of models in a dbt Cloud job run and wait for completion:
        ```python
        from prefect import flow

        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import retry_dbt_cloud_job_run_subset_and_wait_for_completion

        @flow
        def retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow():
            credentials = DbtCloudCredentials.load("MY_BLOCK_NAME")
            retry_dbt_cloud_job_run_subset_and_wait_for_completion(
                dbt_cloud_credentials=credentials,
                run_id=88640123,
            )

        retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow()
        ```
    """  # noqa
    if trigger_job_run_options and trigger_job_run_options.steps_override is not None:
        raise ValueError(
            "Do not set `steps_override` in `trigger_job_run_options` "
            "because this flow will automatically set it"
        )

    run_info_future = await get_dbt_cloud_run_info.submit(
        dbt_cloud_credentials=dbt_cloud_credentials,
        run_id=run_id,
        include_related=["run_steps"],
    )
    run_info = await run_info_future.result()

    job_id = run_info["job_id"]
    job_info_future = await get_dbt_cloud_job_info.submit(
        dbt_cloud_credentials=dbt_cloud_credentials,
        job_id=job_id,
    )
    job_info = await job_info_future.result()

    trigger_job_run_options_override = await _build_trigger_job_run_options(
        dbt_cloud_credentials=dbt_cloud_credentials,
        trigger_job_run_options=trigger_job_run_options,
        run_id=run_id,
        run_info=run_info,
        job_info=job_info,
    )

    # to circumvent `RuntimeError: The task runner is already started!`
    flow_run_context = FlowRunContext.get()
    task_runner_type = type(flow_run_context.task_runner)

    run_data = await trigger_dbt_cloud_job_run_and_wait_for_completion.with_options(
        task_runner=task_runner_type()
    )(
        dbt_cloud_credentials=dbt_cloud_credentials,
        job_id=job_id,
        retry_filtered_models_attempts=0,
        trigger_job_run_options=trigger_job_run_options_override,
        max_wait_seconds=max_wait_seconds,
        poll_frequency_seconds=poll_frequency_seconds,
    )
    return run_data

run_dbt_cloud_job async

Flow that triggers and waits for a dbt Cloud job run, retrying a subset of failed nodes if necessary.

Parameters:

Name Type Description Default
dbt_cloud_job DbtCloudJob

Block that holds the information and methods to interact with a dbt Cloud job.

required
targeted_retries int

The number of times to retry failed steps.

3

Examples:

from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials, DbtCloudJob
from prefect_dbt.cloud.jobs import run_dbt_cloud_job

@flow
def run_dbt_cloud_job_flow():
    dbt_cloud_credentials = DbtCloudCredentials.load("dbt-token")
    dbt_cloud_job = DbtCloudJob(
        dbt_cloud_credentials=dbt_cloud_credentials, job_id=154217
    )
    return run_dbt_cloud_job(dbt_cloud_job=dbt_cloud_job)

run_dbt_cloud_job_flow()
Source code in prefect_dbt/cloud/jobs.py
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
@flow
async def run_dbt_cloud_job(
    dbt_cloud_job: DbtCloudJob,
    targeted_retries: int = 3,
) -> Dict[str, Any]:
    """
    Flow that triggers and waits for a dbt Cloud job run, retrying a
    subset of failed nodes if necessary.

    Args:
        dbt_cloud_job: Block that holds the information and
            methods to interact with a dbt Cloud job.
        targeted_retries: The number of times to retry failed steps.

    Examples:
        ```python
        from prefect import flow
        from prefect_dbt.cloud import DbtCloudCredentials, DbtCloudJob
        from prefect_dbt.cloud.jobs import run_dbt_cloud_job

        @flow
        def run_dbt_cloud_job_flow():
            dbt_cloud_credentials = DbtCloudCredentials.load("dbt-token")
            dbt_cloud_job = DbtCloudJob(
                dbt_cloud_credentials=dbt_cloud_credentials, job_id=154217
            )
            return run_dbt_cloud_job(dbt_cloud_job=dbt_cloud_job)

        run_dbt_cloud_job_flow()
        ```
    """
    logger = get_run_logger()

    run = await task(dbt_cloud_job.trigger.aio)(dbt_cloud_job)
    while targeted_retries > 0:
        try:
            await task(run.wait_for_completion.aio)(run)
            result = await task(run.fetch_result.aio)(run)
            return result
        except DbtCloudJobRunFailed:
            logger.info(
                f"Retrying job run with ID: {run.run_id} "
                f"{targeted_retries} more times"
            )
            run = await task(run.retry_failed_steps.aio)(run)
            targeted_retries -= 1

trigger_dbt_cloud_job_run async

A task to trigger a dbt Cloud job run.

Parameters:

Name Type Description Default
dbt_cloud_credentials DbtCloudCredentials

Credentials for authenticating with dbt Cloud.

required
job_id int

The ID of the job to trigger.

required
options Optional[TriggerJobRunOptions]

An optional TriggerJobRunOptions instance to specify overrides for the triggered job run.

None

Returns:

Type Description
Dict

The run data returned from the dbt Cloud administrative API.

Examples:

Trigger a dbt Cloud job run:

from prefect import flow

from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run


@flow
def trigger_dbt_cloud_job_run_flow():
    credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

    trigger_dbt_cloud_job_run(dbt_cloud_credentials=credentials, job_id=1)


trigger_dbt_cloud_job_run_flow()

Trigger a dbt Cloud job run with overrides:

from prefect import flow

from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run
from prefect_dbt.cloud.models import TriggerJobRunOptions


@flow
def trigger_dbt_cloud_job_run_flow():
    credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

    trigger_dbt_cloud_job_run(
        dbt_cloud_credentials=credentials,
        job_id=1,
        options=TriggerJobRunOptions(
            git_branch="staging",
            schema_override="dbt_cloud_pr_123",
            dbt_version_override="0.18.0",
            target_name_override="staging",
            timeout_seconds_override=3000,
            generate_docs_override=True,
            threads_override=8,
            steps_override=[
                "dbt seed",
                "dbt run --fail-fast",
                "dbt test --fail-fast",
            ],
        ),
    )


trigger_dbt_cloud_job_run()

Source code in prefect_dbt/cloud/jobs.py
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
@task(
    name="Trigger dbt Cloud job run",
    description="Triggers a dbt Cloud job run for the job "
    "with the given job_id and optional overrides.",
    retries=3,
    retry_delay_seconds=10,
)
async def trigger_dbt_cloud_job_run(
    dbt_cloud_credentials: DbtCloudCredentials,
    job_id: int,
    options: Optional[TriggerJobRunOptions] = None,
) -> Dict:
    """
    A task to trigger a dbt Cloud job run.

    Args:
        dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
        job_id: The ID of the job to trigger.
        options: An optional TriggerJobRunOptions instance to specify overrides
            for the triggered job run.

    Returns:
        The run data returned from the dbt Cloud administrative API.

    Examples:
        Trigger a dbt Cloud job run:
        ```python
        from prefect import flow

        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run


        @flow
        def trigger_dbt_cloud_job_run_flow():
            credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

            trigger_dbt_cloud_job_run(dbt_cloud_credentials=credentials, job_id=1)


        trigger_dbt_cloud_job_run_flow()
        ```

        Trigger a dbt Cloud job run with overrides:
        ```python
        from prefect import flow

        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run
        from prefect_dbt.cloud.models import TriggerJobRunOptions


        @flow
        def trigger_dbt_cloud_job_run_flow():
            credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)

            trigger_dbt_cloud_job_run(
                dbt_cloud_credentials=credentials,
                job_id=1,
                options=TriggerJobRunOptions(
                    git_branch="staging",
                    schema_override="dbt_cloud_pr_123",
                    dbt_version_override="0.18.0",
                    target_name_override="staging",
                    timeout_seconds_override=3000,
                    generate_docs_override=True,
                    threads_override=8,
                    steps_override=[
                        "dbt seed",
                        "dbt run --fail-fast",
                        "dbt test --fail-fast",
                    ],
                ),
            )


        trigger_dbt_cloud_job_run()
        ```
    """  # noqa
    logger = get_run_logger()

    logger.info(f"Triggering run for job with ID {job_id}")

    try:
        async with dbt_cloud_credentials.get_administrative_client() as client:
            response = await client.trigger_job_run(job_id=job_id, options=options)
    except HTTPStatusError as ex:
        raise DbtCloudJobRunTriggerFailed(extract_user_message(ex)) from ex

    run_data = response.json()["data"]

    if "project_id" in run_data and "id" in run_data:
        logger.info(
            f"Run successfully triggered for job with ID {job_id}. "
            "You can view the status of this run at "
            f"https://{dbt_cloud_credentials.domain}/#/accounts/"
            f"{dbt_cloud_credentials.account_id}/projects/{run_data['project_id']}/"
            f"runs/{run_data['id']}/"
        )

    return run_data

trigger_dbt_cloud_job_run_and_wait_for_completion async

Flow that triggers a job run and waits for the triggered run to complete.

Parameters:

Name Type Description Default
dbt_cloud_credentials DbtCloudCredentials

Credentials for authenticating with dbt Cloud.

required
job_id int

The ID of the job to trigger.

required
trigger_job_run_options Optional[TriggerJobRunOptions]

An optional TriggerJobRunOptions instance to specify overrides for the triggered job run.

None
max_wait_seconds int

Maximum number of seconds to wait for job to complete

900
poll_frequency_seconds int

Number of seconds to wait in between checks for run completion.

10
retry_filtered_models_attempts int

Number of times to retry models selected by retry_status_filters.

3

Raises:

Type Description
DbtCloudJobRunCancelled

The triggered dbt Cloud job run was cancelled.

DbtCloudJobRunFailed

The triggered dbt Cloud job run failed.

RuntimeError

The triggered dbt Cloud job run ended in an unexpected state.

Returns:

Type Description
Dict

The run data returned by the dbt Cloud administrative API.

Examples:

Trigger a dbt Cloud job and wait for completion as a stand alone flow:

import asyncio
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion

asyncio.run(
    trigger_dbt_cloud_job_run_and_wait_for_completion(
        dbt_cloud_credentials=DbtCloudCredentials(
            api_key="my_api_key",
            account_id=123456789
        ),
        job_id=1
    )
)

Trigger a dbt Cloud job and wait for completion as a sub-flow:

from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion

@flow
def my_flow():
    ...
    run_result = trigger_dbt_cloud_job_run_and_wait_for_completion(
        dbt_cloud_credentials=DbtCloudCredentials(
            api_key="my_api_key",
            account_id=123456789
        ),
        job_id=1
    )
    ...

my_flow()

Trigger a dbt Cloud job with overrides:

import asyncio
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion
from prefect_dbt.cloud.models import TriggerJobRunOptions

asyncio.run(
    trigger_dbt_cloud_job_run_and_wait_for_completion(
        dbt_cloud_credentials=DbtCloudCredentials(
            api_key="my_api_key",
            account_id=123456789
        ),
        job_id=1,
        trigger_job_run_options=TriggerJobRunOptions(
            git_branch="staging",
            schema_override="dbt_cloud_pr_123",
            dbt_version_override="0.18.0",
            target_name_override="staging",
            timeout_seconds_override=3000,
            generate_docs_override=True,
            threads_override=8,
            steps_override=[
                "dbt seed",
                "dbt run --fail-fast",
                "dbt test --fail fast",
            ],
        ),
    )
)

Source code in prefect_dbt/cloud/jobs.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
@flow(
    name="Trigger dbt Cloud job run and wait for completion",
    description="Triggers a dbt Cloud job run and waits for the"
    "triggered run to complete.",
)
async def trigger_dbt_cloud_job_run_and_wait_for_completion(
    dbt_cloud_credentials: DbtCloudCredentials,
    job_id: int,
    trigger_job_run_options: Optional[TriggerJobRunOptions] = None,
    max_wait_seconds: int = 900,
    poll_frequency_seconds: int = 10,
    retry_filtered_models_attempts: int = 3,
) -> Dict:
    """
    Flow that triggers a job run and waits for the triggered run to complete.

    Args:
        dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
        job_id: The ID of the job to trigger.
        trigger_job_run_options: An optional TriggerJobRunOptions instance to
            specify overrides for the triggered job run.
        max_wait_seconds: Maximum number of seconds to wait for job to complete
        poll_frequency_seconds: Number of seconds to wait in between checks for
            run completion.
        retry_filtered_models_attempts: Number of times to retry models selected by `retry_status_filters`.

    Raises:
        DbtCloudJobRunCancelled: The triggered dbt Cloud job run was cancelled.
        DbtCloudJobRunFailed: The triggered dbt Cloud job run failed.
        RuntimeError: The triggered dbt Cloud job run ended in an unexpected state.

    Returns:
        The run data returned by the dbt Cloud administrative API.

    Examples:
        Trigger a dbt Cloud job and wait for completion as a stand alone flow:
        ```python
        import asyncio
        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion

        asyncio.run(
            trigger_dbt_cloud_job_run_and_wait_for_completion(
                dbt_cloud_credentials=DbtCloudCredentials(
                    api_key="my_api_key",
                    account_id=123456789
                ),
                job_id=1
            )
        )
        ```

        Trigger a dbt Cloud job and wait for completion as a sub-flow:
        ```python
        from prefect import flow
        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion

        @flow
        def my_flow():
            ...
            run_result = trigger_dbt_cloud_job_run_and_wait_for_completion(
                dbt_cloud_credentials=DbtCloudCredentials(
                    api_key="my_api_key",
                    account_id=123456789
                ),
                job_id=1
            )
            ...

        my_flow()
        ```

        Trigger a dbt Cloud job with overrides:
        ```python
        import asyncio
        from prefect_dbt.cloud import DbtCloudCredentials
        from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion
        from prefect_dbt.cloud.models import TriggerJobRunOptions

        asyncio.run(
            trigger_dbt_cloud_job_run_and_wait_for_completion(
                dbt_cloud_credentials=DbtCloudCredentials(
                    api_key="my_api_key",
                    account_id=123456789
                ),
                job_id=1,
                trigger_job_run_options=TriggerJobRunOptions(
                    git_branch="staging",
                    schema_override="dbt_cloud_pr_123",
                    dbt_version_override="0.18.0",
                    target_name_override="staging",
                    timeout_seconds_override=3000,
                    generate_docs_override=True,
                    threads_override=8,
                    steps_override=[
                        "dbt seed",
                        "dbt run --fail-fast",
                        "dbt test --fail fast",
                    ],
                ),
            )
        )
        ```
    """  # noqa
    logger = get_run_logger()

    triggered_run_data_future = await trigger_dbt_cloud_job_run.submit(
        dbt_cloud_credentials=dbt_cloud_credentials,
        job_id=job_id,
        options=trigger_job_run_options,
    )
    run_id = (await triggered_run_data_future.result()).get("id")
    if run_id is None:
        raise RuntimeError("Unable to determine run ID for triggered job.")

    final_run_status, run_data = await wait_for_dbt_cloud_job_run(
        run_id=run_id,
        dbt_cloud_credentials=dbt_cloud_credentials,
        max_wait_seconds=max_wait_seconds,
        poll_frequency_seconds=poll_frequency_seconds,
    )

    if final_run_status == DbtCloudJobRunStatus.SUCCESS:
        try:
            list_run_artifacts_future = await list_dbt_cloud_run_artifacts.submit(
                dbt_cloud_credentials=dbt_cloud_credentials,
                run_id=run_id,
            )
            run_data["artifact_paths"] = await list_run_artifacts_future.result()
        except DbtCloudListRunArtifactsFailed as ex:
            logger.warning(
                "Unable to retrieve artifacts for job run with ID %s. Reason: %s",
                run_id,
                ex,
            )
        logger.info(
            "dbt Cloud job run with ID %s completed successfully!",
            run_id,
        )
        return run_data
    elif final_run_status == DbtCloudJobRunStatus.CANCELLED:
        raise DbtCloudJobRunCancelled(
            f"Triggered job run with ID {run_id} was cancelled."
        )
    elif final_run_status == DbtCloudJobRunStatus.FAILED:
        while retry_filtered_models_attempts > 0:
            logger.info(
                f"Retrying job run with ID: {run_id} "
                f"{retry_filtered_models_attempts} more times"
            )
            try:
                retry_filtered_models_attempts -= 1
                run_data = await (
                    retry_dbt_cloud_job_run_subset_and_wait_for_completion(
                        dbt_cloud_credentials=dbt_cloud_credentials,
                        run_id=run_id,
                        trigger_job_run_options=trigger_job_run_options,
                        max_wait_seconds=max_wait_seconds,
                        poll_frequency_seconds=poll_frequency_seconds,
                    )
                )
                return run_data
            except Exception:
                pass
        else:
            raise DbtCloudJobRunFailed(f"Triggered job run with ID: {run_id} failed.")
    else:
        raise RuntimeError(
            f"Triggered job run with ID: {run_id} ended with unexpected"
            f"status {final_run_status.value}."
        )