prefect_dask.task_runners
Interface and implementations of the Dask Task Runner. Task Runners in Prefect are responsible for managing the execution of Prefect task runs. Generally speaking, users are not expected to interact with task runners outside of configuring and initializing them for a flow.
Example
import time
from prefect import flow, task
@task
def shout(number):
time.sleep(0.5)
print(f"#{number}")
@flow
def count_to(highest_number):
for number in range(highest_number):
shout.submit(number)
if __name__ == "__main__":
count_to(10)
# outputs
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
Switching to a DaskTaskRunner
:
import time
from prefect import flow, task
from prefect_dask import DaskTaskRunner
@task
def shout(number):
time.sleep(0.5)
print(f"#{number}")
@flow(task_runner=DaskTaskRunner)
def count_to(highest_number):
for number in range(highest_number):
shout.submit(number)
if __name__ == "__main__":
count_to(10)
# outputs
#3
#7
#2
#6
#4
#0
#1
#5
#8
#9
Classes
DaskTaskRunner
Bases: BaseTaskRunner
A parallel task_runner that submits tasks to the dask.distributed
scheduler.
By default a temporary distributed.LocalCluster
is created (and
subsequently torn down) within the start()
contextmanager. To use a
different cluster class (e.g.
dask_kubernetes.KubeCluster
), you can
specify cluster_class
/cluster_kwargs
.
Alternatively, if you already have a dask cluster running, you can provide
the cluster object via the cluster
kwarg or the address of the scheduler
via the address
kwarg.
Multiprocessing safety
Note that, because the DaskTaskRunner
uses multiprocessing, calls to flows
in scripts must be guarded with if __name__ == "__main__":
or warnings will
be displayed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster |
Cluster
|
Currently running dask cluster;
if one is not provider (or specified via |
None
|
address |
string
|
Address of a currently running dask
scheduler. Defaults to |
None
|
cluster_class |
string or callable
|
The cluster class to use
when creating a temporary dask cluster. Can be either the full
class name (e.g. |
None
|
cluster_kwargs |
dict
|
Additional kwargs to pass to the
|
None
|
adapt_kwargs |
dict
|
Additional kwargs to pass to |
None
|
client_kwargs |
dict
|
Additional kwargs to use when creating a
|
None
|
Examples:
Using a temporary local dask cluster:
from prefect import flow
from prefect_dask.task_runners import DaskTaskRunner
@flow(task_runner=DaskTaskRunner)
def my_flow():
...
Using a temporary cluster running elsewhere. Any Dask cluster class should work, here we use dask-cloudprovider:
DaskTaskRunner(
cluster_class="dask_cloudprovider.FargateCluster",
cluster_kwargs={
"image": "prefecthq/prefect:latest",
"n_workers": 5,
},
)
Connecting to an existing dask cluster:
DaskTaskRunner(address="192.0.2.255:8786")
Source code in prefect_dask/task_runners.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
|
Functions
__eq__
Check if an instance has the same settings as this task runner.
Source code in prefect_dask/task_runners.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
__getstate__
Allow the DaskTaskRunner
to be serialized by dropping
the distributed.Client
, which contains locks.
Must be deserialized on a dask worker.
Source code in prefect_dask/task_runners.py
361 362 363 364 365 366 367 368 369 |
|
__setstate__
Restore the distributed.Client
by loading the client on a dask worker.
Source code in prefect_dask/task_runners.py
371 372 373 374 375 376 |
|
duplicate
Create a new instance of the task runner with the same settings.
Source code in prefect_dask/task_runners.py
226 227 228 229 230 231 232 233 234 235 236 |
|